

I. Problem Formulation

- We implement and end to end text-to-speech (TTS) model from Tachibana et. al.
- We show that it is possible to build a decent quality TTS model in \$50-\$100
- Attention is a bottleneck experimented with \bullet two modifications for improvement
- Interesting observations made about \bullet intermediate modules / embeddings

II. Dataset

- 13k unaligned 1-10s audio-sentence pairs from \bullet female English speaker. Total size ~24h
- Text preprocessed to 32 char tokens in \bullet a-z'.?<space>PE (L_{Nx32})
- Audio converted to freq-domain as normalized spectrograms $(\mathbf{Y}_{Tx80}) (\mathbf{Z}_{4Tx513}) - [0,1]$

III. Model

- Text2Mel convolutional seq2seq model (Gehring et. al): characters to \mathbf{Y}_{Tx80} frames
- SSRN upscale \mathbf{Y}_{Tx80} frames to \mathbf{Z}_{4Tx513} frames \bullet
- Text2Mel during training:

$$\begin{split} \mathbf{K}, \mathbf{V}_{N \times d} &= TextEnc(\mathbf{L}_{N \times e}) \\ \mathbf{Q}_{T \times d} &= AudioEnc(\mathbf{S}_{T \times F}) \\ \mathbf{S}_{T \times F} &= 0 \oplus \mathbf{Y}_{0:F-1} \qquad \text{(shifted left)} \\ \mathbf{R}_{T \times d} &= \mathbf{A}\mathbf{V} = softmax \left(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d}}\right) \mathbf{V} \\ \mathbf{\hat{Y}}_{T \times F} &= AudioDec(\mathbf{R} \oplus \mathbf{Q}) \\ \mathbf{\hat{Z}}_{4T \times F_{o}} &= SSRN(\mathbf{Y}) \\ \mathbf{J}_{L1} &= \mathbb{E}|\mathbf{Y} - \mathbf{\hat{Y}}| \\ \mathbf{J}_{CE} &= -\mathbb{E}[\mathbf{Y}\log\mathbf{\hat{Y}} + (1 - \mathbf{Y})\log(\mathbf{1} - \mathbf{\hat{Y}})] \end{split}$$

• Text2Mel during inference:

$$\begin{aligned} \mathbf{S}_{1:t+1,F} &= \mathbf{S}_{1:t,F} \oplus \mathbf{\hat{Y}}_{t,F} \qquad \text{(feedback)} \\ \mathbf{\hat{Z}}_{4T \times F_o} &= SSRN(\mathbf{\hat{Y}}) \end{aligned}$$

Guided Attention Loss

- Standard attention does not converge
- L1 loss keep decreasing (AudioEnc, AudioDec)
- Generating from this model produces gibberish sounds that sound like speech!
- An additional loss that penalizes terms in **A** that are far from the diagonal speeds up convergence (Tachibana)

$$W_{n,t} = (1 - \exp(-n/N) - t/\mathbf{J}_{att} = \mathbb{E}(A \circ W)$$

Results of Model Variation Experiments (best and lowest highlighted)

Model	Variation	L1 (Train)	L1 (Validation)	Guided Attention
M1	Standard attention, CE loss	0.0288	0.0611	$f 27.5 imes10^{-4}$
M2	M1 + guided attention	0.0249	0.0484	$3.99 imes 10^{-4}$
M3	M2 + local char encodings	0.0245	0.0485	$4.19 imes 10^{-4}$
M4	M1 + positional encodings	0.0230	0.0490	8.42×10^{-4}
M5	M4 without CE loss	0.0235	0.0490	17×10^{-4}

Attention, I'm Trying to Speak! Speech Synthesis

Akash Mahajan (CS224n Final Project)

akashmjn@stanford.edu

IV. Approach & Experiments

- $(T)^2/2g^2$

Positional, Local Encodings

- Combine character-level embeddings L_{N_x32} with value encoding **V**.
- Attention needs to be initialized properly use a prior that enforces a linear monotonicity
- A value h_n added to both **K** and **Q**. Produces best scores, and greatly improves quality of char embeddings

$$h_p(i) = sin(\omega_s i/10000^{k/d}) \quad \text{(even i)}$$
$$= cos(\omega_s i/10000^{k/d}) \quad \text{(odd i)}$$

- with Guided Attention. 10 2017.
- J. Raiman, and J. Miller. Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning. 10 2017.

Stanford ENGINEERING

training just AudioEnc, AudioDec like a "audio language model" without labels Transfer to new language with lesser data MOS-like subjective evaluation scores

VII. Selected References

H. Tachibana, K. Uenoyama, and S. Aihara. Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional Sequence to Sequence Learning. 5 2017 W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S. Narang,